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To assist in the interpretation of study findings and facilitate comparisons of findings 
across studies, the WWC computes the effect sizes (ES) and the improvement indices associated 
with study findings on outcome measures relevant to the WWC’s review. In addition, the WWC 
computes the levels of statistical significance of these findings corrected for clustering and/or 
multiple comparisons where necessary. The purpose of this document is to provide the technical 
details about the various types of computations conducted by the WWC as part of its review 
process, which will allow readers to better understand the findings that we report and the 
conclusions that we draw regarding the effectiveness of the educational interventions reviewed 
by the WWC.1
 

Specifically, the technical details of the following types of WWC-conducted 
computations are as follows:   

 
• Effect Size Computation for Continuous Outcomes 

 
⎯ ES as Standardized Mean Difference (Hedges’s g) 
⎯ ES Computation Based on Results from T-Tests or ANOVA (without adjustment 

for pretest) 
⎯ ES Computation Based on Results from ANCOVA (with adjustment for pretest) 
⎯ ES Computation Based on Results from HLM (with adjustment for pretest)  

 
• Effect Size Computation for Dichotomous Outcomes 
 
• Computation of the Improvement Index 
 
• Clustering Correction of the Statistical Significance of Effects Estimated with 

Mismatched Analyses 
 
• Benjamini-Hochberg Correction of the Statistical Significance of Effects Estimated 

with Multiple Comparisons 
 

In addition to computational procedures, this document presents the rationale for the 
specific computations conducted and their underlying assumptions. These procedures are 
currently used to compute effect sizes and make corrections for study designs and reporting 
practices most commonly encountered during WWC’s review process. It is not meant to serve as 
a comprehensive compendium of an exhaustive list of ES computation methods that have ever 
been developed in the field.  
                                                 
1 The WWC regularly updates WWC technical standards and their application to take account of new considerations 
brought forth by experts and users.  Such changes may result in re-appraisals of studies and/or interventions 
previously reviewed and rated. Current WWC standards offer guidance for those planning or carrying out studies, 
not only in the design considerations but the analysis and reporting stages as well.  WWC standards, however, may 
not pertain to every situation, context, or purpose of a study and will evolve. 
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I.  Effect Size Computation for Continuous Outcomes 
 
ES as Standardized Mean Difference (Hedges’s g) 
 

Different types of ES indices have been developed for different types of outcome 
measures, given their distinct statistical properties. For continuous outcomes, the WWC has 
adopted the most commonly-used ES index—the standardized mean difference, which is defined 
as the difference between the mean outcome of the intervention group and the mean outcome of 
the comparison group divided by the pooled within-group standard deviation on that outcome 
measure. For studies that had a nested data structure (e.g., students were nested within 
teachers/classrooms or schools), the WWC generally gives preference to outcomes at the student 
level over outcomes at an aggregate level (e.g., teacher/classroom or school level). Therefore, the 
default standard deviation used in ES computation is the student-level standard deviation.2  

 
The basic formula for computing standardized mean difference is as follows:  

 
Standardized mean difference = (X1 – X2) / Spooled,     (1) 

 
where X1 and X2 are the means of the outcome for the intervention group and the comparison 
group respectively, and Spooled is the pooled within-group standard deviation of the outcome at 
the student level. Formulaically,  
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where n1 and n2 are the sample sizes, and S1 and S2 the standard deviations, for the intervention 
group and the comparison group respectively.   
 

The ES index thus computed is referred to as Hedges’ g.3 This index, however, has been 
shown to be upwardly biased when the sample size is small. Therefore, we have applied a simple 
correction for this bias developed by Hedges (1981), which produces an unbiased ES estimate by 
multiplying the Hedges’s g by a factor of [1-3/(4N-9)], with N being the total sample size. 
Unless otherwise noted, Hedges’s g corrected for small-sample bias is the default ES measure for 
continuous outcomes used in the WWC’s review. 

 
                                                 
2 Since the standard deviation of a given outcome tends to be much larger at the student level than at the 
teacher/classroom or school level, the ES at the student level is likely to be smaller than that at an aggregate level.  
3 The Hedges’ g index differs from the Cohen’s d index in that Hedges’s g uses the square root of degrees of 
freedom (sqrt(N-k) for k groups) for the denominator of the pooled within-group standard deviation (Spooled), 
whereas Cohen’s d uses the square root of sample size (sqrt(N)) to compute Spooled (Rosenthal, 1994; Rosnow, 
Rosenthal, & Rubin, 2000). 
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In certain situations, however, the WWC may present study findings using ES measures 
other than Hedges’s g. If, for instance, the standard deviation of the intervention group differs 
substantially from that of the comparison group, the PIs and review teams may choose to use the 
standard deviation of the comparison group instead of the pooled within-group standard 
deviation as the denominator of the standardized mean difference, and compute the ES as Glass’s 

 instead of Hedges’s g. The justification for doing so is that when the intervention and 
comparison groups have unequal variances, as in the case where the variance of the outcome is 
affected by the treatment, the comparison group variance is likely to be a better estimate of the 
population variance than the pooled within-group variance (Cooper, 1998; Lipsey & Wilson, 
2001). The WWC may also use Glass’s ∆, or other ES measures used by the study authors, to 
present study findings—if there is not enough information available for computing Hedge’s g. 
These deviations from the default will be clearly documented in the WWC’s review process.  

∆

 
The sections to follow focus on the WWC’s default approach to computing ES for 

continuous outcomes. We describe procedures for computing Hedges’s g based on results from 
different types of statistical analysis most commonly encountered in the WWC’s review.  
 
ES Computation Based on Results from T-Tests or ANOVA (without adjustment for 
pretest) 
 

For randomized controlled trials, study authors may assess an intervention’s effects based 
on t-tests or analyses of variance (ANOVA) without adjustment for pretest or other covariates, 
assuming group equivalence on pre-intervention measures achieved through random assignment. 
If the study authors reported posttest means and standard deviations as well as sample sizes for 
both the intervention group and the comparison group, the computation of ES will be 
straightforward using the standard formula for Hedges’s g (see Equation (3)).   
 
 Where the study authors did not report the posttest mean, standard deviation, or sample 
size for each study group, the WWC computes Hedges’s g based on t-test or ANOVA F-test 
results, if they were reported along with sample sizes for both the intervention group (n1) and the 
comparison group (n2). For ES’s based on t-test results,  
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For ES’s based on ANOVA F-test results, 
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ES Computation Based on Results from ANCOVA (with adjustment for pretest) 
 

Analysis of covariance (ANCOVA) is a commonly used analytic method for quasi-
experimental designs. It assesses the effects of an intervention while controlling for important 
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covariates, particular pretest, that might confound the effects of the intervention. ANCOVA is 
also used to analyze data from randomized controlled trials so that greater statistical precision of 
parameter estimates can be achieved through covariate adjustment.  

 
For study findings based on ANCOVA, the WWC computes Hedges’s g as covariate 

adjusted mean difference divided by unadjusted pooled within-group standard deviation. The 
use of adjusted mean difference as the numerator of ES ensures that the ES estimate is adjusted 
for covariate difference between the intervention and the comparison groups that might 
otherwise bias the result. The use of unadjusted pooled within-group standard deviation as the 
denominator of ES allows comparisons of ES estimates across studies by using a common metric 
to standardize group mean differences, i.e., the population standard deviation as estimated by the 
unadjusted pooled within-group standard deviation.    

 
Specifically, when sample sizes, and adjusted means and unadjusted standard deviations 

of the posttest from an ANCOVA are available for both the intervention and the comparison 
groups, the WWC computes Hedges’s g as follows:  
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where X1’ and X2’ are adjusted posttest means, n1 and n2 the sample sizes, and S1 and S2 the 
unadjusted posttest standard deviations, for the intervention group and the comparison group 
respectively,  
 

It is not uncommon, however, for study authors to report unadjusted group means on both 
pretest and posttest, but not adjusted group means or adjusted group mean differences on the 
posttest. Absent information on the correlation between the pretest and the posttest, as is 
typically the case, the WWC’s default approach is to compute the numerator of ES—the adjusted 
mean difference—as the difference between the pretest-posttest mean difference for the 
intervention group and the pretest-posttest mean difference for the comparison group. 
Specifically, 
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where X1 and X2 are unadjusted posttest means,  X1-pre and X2-pre unadjusted pretest means,  n1 
and n2 the sample sizes, and S1 and S2 the unadjusted posttest standard deviations, for the 
intervention group and the comparison group respectively, 
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This “difference-in-differences” approach to estimating an intervention’s effects while 
taking into account group difference in pretest is not necessarily optimal, as it is likely to either 
overestimate or underestimate the adjusted group mean difference, depending on which group 
performed better on the pretest.4 Moreover, this approach does not provide a means for adjusting 
the statistic significance of the adjusted mean difference to reflect the covariance between the 
pretest and the posttest. Nevertheless, it yields a reasonable estimate of the adjusted group mean 
difference, which is equivalent to what would have been obtained from a commonly used 
alternative to the covariate adjustment-based approach to testing an intervention’s effect—the 
analysis of gain scores. 
 
 Another limitation of the “difference-in-differences” approach is that it assumes the 
pretest and the posttest are the same test. Otherwise, the means on the two types of tests might 
not be comparable, and hence it might not be appropriate to compute the pretest-posttest 
difference for each group. In cases where different pretest and posttests were used, and only 
unadjusted means on pretest and posttest were reported, the Principal Investigators (PIs) will 
need to consult with the WWC Technical Review Team to determine whether it is reasonable to 
use the difference-in-differences approach to compute the ES’s.  
 

The difference-in-differences approach presented above also assumes that the pretest-
posttest correlation is unknown. In some areas of educational research, however, empirical data 
on the relationships between pretest and posttest may be available. If such data are dependable, 
the WWC PIs and the review team in a given topic area may choose to use the empirical 
relationship to estimate the adjusted group mean difference that is unavailable from the study 
report or study authors, rather than using the default difference-in-differences approach.  The 
advantage of  doing so is that, if indeed the empirical relationship between pretest and posttest is 
dependable, the covariate-adjusted estimates of the intervention’s effects will be less biased than 
those based on the difference-in-differences (gain score) approach. If the PIs and review teams 
choose to compute ESs using an empirical pretest-posttest relationship, they will need to provide 
an explicit justification for their choice as well as evidence on the credibility of the empirical 
relationship.  
 
 Computationally, if the pretest and posttest has a correlation of r, then  
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where all the other terms are the same as those in Equation (7).  
 

A final note about ANCOVA-based ES computation is that Hedges’s g cannot be 
computed based on the F-statistic from an ANCOVA using Equation (5). Unlike the F-statistic 
from an ANOVA, which is based on unadjusted within-group variance, the F-statistic from an 
                                                 
4 If the intervention group had a higher average pretest score than the comparison group, the difference-in-difference 
approach is likely to underestimate the adjusted group mean difference. Otherwise, it is likely to overestimate the 
adjusted group mean difference.  
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ANCOVA is based on covariate-adjusted within-group variance. Hedges’s g, however, requires 
the use of unadjusted within-group standard deviation. Therefore, we cannot compute Hedges’s g 
with the F-statistic from an ANCOVA in the same way as we compute g with the F-statistic from 
an ANOVA. If the pretest-posttest correlation is known, however, we could derive Hedges’s g 
from the ANCOVA F-statistic as follows:  
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where r is the pretest-posttest correlation, and n1 and n2 are the sample sizes for the intervention 
group and the comparison group respectively.  

 
ES Computation Based on Results from HLM (with adjustment for pretest)  
  

With the increasing popularity of multi-level analysis in education and other social 
science fields, more and more researchers have begun to employ the hierarchical linear modeling 
(HLM) method to analyze data of a nested nature (e.g., students nested within classes and classes 
nested within schools) (Raudenbush & Bryk, 2002). Similar to ANCOVA, HLM also adjusts for 
important covariates such as pretest when estimating an intervention’s effect. Unlike ANCOVA 
that assumes independence of observations, however, HLM explicitly takes into account the 
dependence among members within the same higher-level unit (e.g., the dependence among 
students within the same class). Therefore, the parameter estimates, particularly the standard 
errors, generated from HLM are less biased than those generated from ANCOVA when the data 
have a multilevel structure.  

 
Hedges’s g for intervention effects estimated from HLM analyses is defined in a similar 

way to that based on ANCOVA: adjusted group mean difference divided by unadjusted pooled 
within-group standard deviation. Specifically,  
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Where γ is the HLM coefficient for the intervention’s effect, which represents the group mean 
difference adjusted for both level-1 and level-2 covariates, if any;5 n1 and n2  are the sample sizes, 
and S1 and S2 the unadjusted standard deviations for the intervention group and the comparison 
group respectively. 
 
 One thing to note about the denominator of Hedges’s g based on HLM results is that the 
level-1 variance, also called “within-group variance,” estimated from a typical two-level HLM 

                                                 
5 The level-2 coefficients are adjusted for the level-1 covariates under the condition that the level-1 covariates are 
either uncentered or grand-mean centered, which are the most common centering options in an HLM analysis 
(Raudenbush & Bryk, 2002). The level-2 coefficients are not adjusted for the level-1 covariates if the level-1 
covariates are group-mean centered.    
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analysis is not the same as the conventional unadjusted pooled within-group variance that should 
be used in ES computation. The within-group variance from an HLM model that incorporates 
level-1 covariates has been adjusted for these covariates. Even if the within-group variance is 
based on an HLM model that does not contain any covariates (i.e., a fully-unconditional model), 
it is still not appropriate for ES computation, because it does not include the variance between 
level-2 units within each study group that is part of the unadjusted pooled within-group variance. 
Therefore, the level-1 within-group variance estimated from an HLM analysis tends to be smaller 
than the conventional unadjusted pooled within-group variance, and would thus lead to an 
overestimate of the ES if used in the denominator of the ES.  
 
 The ES computations for continuous outcomes explained above pertain to individual 
findings within a given outcome domain examined in a study. If the study authors assessed the 
intervention’s effects on multiple outcome measures within a domain, the WWC computes a 
domain average ES as a simple average of the ES’s across all individual findings within the 
domain.  
  
II. Effect Size Computation for Dichotomous Outcomes 
 

Although not as common as continuous outcomes, dichotomous outcomes are sometimes 
used in studies of educational interventions. Examples include dropout vs. stay in school; grade 
promotion vs. retention; and pass vs. fail a test. Group mean differences, in this case, appear as 
differences in proportions or differences in the probability of the occurrence of an event. The ES 
measure of choice for dichotomous outcomes is odds ratio, which has many statistical and 
practical advantages over alternative ES measures such as the difference between two 
probabilities, the ratio of two probabilities, and the phi coefficient (Fleiss, 1994; Lipsey & 
Wilson, 2001).  

 
The measure of odds ratio builds on the notion of odds. For a given study group, the odds 

for the occurrence of an event are defined as follows:  
 

Odds = 
p

p
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,          (11) 

 
where p is the probability of the occurrence of an event within the group. Odds ratio (OR) is 
simply the ratio between the odds for the two groups compared:     
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where  and  are the probabilities of the occurrence of an event for the intervention group 
and the comparison group respectively.  

1p 2p

 
As is the case with ES computation for continuous variables, the WWC computes ES’s 

for dichotomous outcomes based on student-level data in preference to aggregate-level data for 
studies that had a multi-level data structure. The probabilities (  and ) used in calculating 1p 2p
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the odds ratio represent the proportions of students demonstrating a certain outcome among 
students across all teachers/classrooms or schools in each study condition, which are likely to 
differ from the probabilities based on aggregate-level data (e.g., means of school-specific 
probabilities) unless the classrooms or schools in the sample were of similar sizes.  

 
Following conventional practice, the WWC transforms odds ratio calculated based on 

Equation (12) to logged odds ratio (LOR) (i.e., the natural log of the odds ratio) to simplify 
statistical analyses:  

 
LOR = In(OR)          (13) 

 
The logged odds ratio has a convenient distribution form, which is approximately normal with a 
mean of 0 and a standard deviation of π/sqrt(3), or 1.81. 
 

The logged odds ratio can also be expressed as the difference between the logged odds, or 
logits, for the two groups compared. Equivalent to Equation (13),  

 
LOR = ,       (14) )()( 21 OddsInOddsIn −

 
which shows more clearly the connection between the logged odds ratio index and the 
standardized mean difference index (Hedges’s g) for ES’s. To make logged odds ratio 
comparable to standardized mean difference and thus facilitate the synthesis of research findings 
based on different types of outcomes, researchers have proposed a variety of methods for 
“standardizing” logged odds ratio. Based on a Monte Carlo simulation study of seven different 
types of ES indices for dichotomous outcomes, Sanchez-Meca, Marin-Martinez, and Chacon-
Moscoso (2003) concluded that the ES index proposed by Cox (1970) is the least biased 
estimator of the population standardized mean difference, assuming an underlying normal 
distribution of the outcome. The WWC, therefore, has adopted the Cox index as the default ES 
measure for dichotomous outcomes. The computation of the Cox index is straightforward:  
 

LORCox = LOR/1.65         (15)
  
The above index yields ES values very similar to the values of Hedges’s g that one would 

obtain if group means, standard deviations, and sample sizes were available—assuming that the 
dichotomous outcome measure is based on an underlying normal distribution. Although the 
assumption may not always hold, as Sanchez-Meca and his colleagues (2003) note, primary 
studies in social and behavioral sciences routinely apply parametric statistical tests that imply 
normality. Therefore, the assumption of normal distribution is a reasonable conventional default.  
 
III.  Computation of the Improvement Index  
 

In order to help readers judge the practical importance of an intervention’s effect, the 
WWC translates ES into an “improvement index.”  The improvement index represents the 
difference between the percentile rank corresponding to the intervention group mean and the 
percentile rank corresponding to the comparison group mean (i.e., 50th percentile) in the 
comparison group distribution. Alternatively, the improvement index can be interpreted as the 
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expected change in percentile rank for an average comparison group student if the student had 
received the intervention.  
 As an example, if an intervention produced a positive impact on students’ reading 
achievement with an effect size of 0.25, the effect size could be translated to an improvement 
index of 10 percentile points. We could then conclude that the intervention would have led to a 
10% increase in percentile rank for an average student in the comparison group, and that 60% 
(10% + 50%=60%) of the students in the intervention group scored above the comparison group 
mean.  
 

Specifically, the improvement index is computed as follows: 
 
(1) Convert the ES (Hedges’s g) to Cohen’s U3 index.  
 

The U3 index represents the percentile rank of a comparison group student who 
performed at the level of an average intervention group student. An effect size of 0.25, for 
example, would correspond to a U3 of 60%, which means that an average intervention group 
student would rank at the 60th percentile in the comparison group. Equivalently, an average 
intervention group student would rank 10 percentile points higher than an average comparison 
group student, who, by definition, ranks at the 50th percentile.  
 

Mechanically, the conversion of an effect size to a U3 index entails looking up on a table 
that lists the proportion of area under the standard normal curve for different values of z-scores, 
which can be found in the appendices of most statistics textbooks. For a given effect size, U3 has 
a value equal to the proportion of area under the normal curve below the value of the effect 
size—under the assumptions that the outcome is normally distributed and that the variance of the 
outcome is similar for the intervention group and the comparison group.   
   
(2) Compute:  
 

Improvement index = U3 – 50%        (16) 
 

Given that U3 represents the percentile rank of an average intervention group student in 
the comparison group distribution, and that the percentile rank of an average comparison group 
student is 50%, the improvement index, defined as (U3 – 50%), would represent the difference in 
percentile rank between an average intervention group student and an average comparison group 
student in the comparison group distribution.  

 
 In addition to the improvement index for each individual finding, the WWC also 
computes a domain average improvement index for each study as well as a domain average 
improvement index across studies for each outcome domain. The domain average improvement 
index for each study is computed based on the domain average effect size for that study rather 
than as the average of the improvement indices for individual findings within that study. 
Similarly, the domain average improvement index across studies is computed based on the 
domain average effect size across studies, with the latter computed as the average of the domain 
average effect sizes for individual studies.  
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IV.  Clustering Correction of the Statistical Significance of Effects Estimated with 
Mismatched Analyses 
 

In order to adequately assess an intervention’s effects, it is important to know not only 
the magnitude of the effects as indicated by ES, but also the statistical significance of the effects. 
The correct statistical significance of findings, however, is not always readily available, 
particularly in studies where the unit of assignment does not match the unit of analysis. The most 
common “mismatch” problem occurs when assignment was carried out at the cluster level (e.g., 
classroom or school level), whereas the analysis was conducted at the student level, ignoring the 
dependence among students within the same clusters. Although the point estimates of the 
intervention’s effects based on such mismatched analyses are unbiased, the standard errors of the 
effect estimates are likely to be underestimated, which would lead to inflated Type I error and 
overestimated statistical significance.  
 

In order to present a fair judgment about an intervention’s effects, the WWC computes 
clustering-corrected statistical significance for effects estimated from mismatched analyses and 
the corresponding domain average effects based on Hedges’ (2005) most recent work. As 
clustering correction will decrease the statistical significance (or increase the p-value) of the 
findings, non-significant findings from a mismatched analysis will remain non-significant after 
the correction. Therefore, the WWC only applies the correction to findings reported to be 
statistically significant by the study authors.  

 
The basic approach to clustering correction is to first compute the t-statistic 

corresponding to the ES that ignores clustering, and then correct both the t-statistic and the 
associated degrees of freedom for clustering based on sample sizes, number of clusters, and the 
intra-class correlation. The statistic significance corrected for clustering could then be obtained 
from the t-distribution with the corrected t-statistic and degrees of freedom. In the remainder of 
this section, we detail each step of the process.   
 
(1) Compute the t-statistic for the ES ignoring clustering 
 

This is essentially the reverse of Equation (4) that computes Hedges’s g based on t: 
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where g is the ES that ignores clustering, and n1 and n2 are the sample sizes for the intervention 
group and the comparison group respectively for a given outcome. For domain average ES’s, n1 
and n2 are the average sample sizes for the intervention and comparison groups respectively 
across all outcomes within the domain 
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(2) Correct the above t-statistic for clustering  
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where N is the total sample size at the student level (N = n1+ n2), m is the total number of 
clusters in the intervention and comparison groups (m = m1+ m2, m1 and m2 are the number of 
clusters in each of the two groups), and ρ is the intra-class correlation (ICC) for a given outcome.  
 

The value of ICC, however, is often not available from the study reports. Based on 
empirical literature in the field of education, the WWC has adopted a default ICC value of .20 
for achievement outcomes and .10 for behavioral and attitudinal outcomes. The PIs and review 
teams may set different defaults with explicit justification in terms of the nature of the research 
circumstances or the outcome domain.  

 
For domain average ES’s, the ICC used in Equation (18) is the average ICC across all 

outcomes within the domain. If the number of clusters in the intervention and comparison groups 
differs across outcomes within a given domain, the total number of clusters (m) used for 
computing the corrected t-statistic will be based on the largest number of clusters in both groups 
across outcomes within the domain (i.e., largest m1 and m2 across outcomes). This gives the 
study the benefit of the doubt by crediting the measure with the most statistical power, so that the 
WWC’s rating of interventions will not be unduly conservative.  
 
(3) Compute the degrees of freedom associated with the t-statistics corrected for clustering: 
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(4) Obtain the statistical significance of the effect corrected for clustering 
 

The clustering-corrected statistical significance (p-value) is determined based on the t-
distribution with corrected t-statistic (tA) and the corrected degrees of freedom (h).  This p-value 
can either be looked up in a t-distribution table that can be found in the appendices of most 
statistical textbooks, or computed using the t-distribution function in Excel: p = TDIST(tA, h, 2).   
 
Further information on this topic is available in the WWC’s technical papers on the WWC 
Tutorial on Mismatch Between Unit of Assignment and Unit of Analysis and the WWC 
Intervention Rating Scheme. 
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V.  Benjamini-Hochberg Correction of the Statistical Significance of Effects Estimated with 
Multiple Comparisons 
 

In addition to clustering, another factor that may inflate Type I error and the statistical 
significance of findings is when study authors perform multiple hypothesis tests simultaneously. 
The traditional approach to addressing the problem is the Bonferroni method, which lowers the 
critical p-value for individual comparisons by a factor of 1/m, with m being the total number of 
comparisons made. The Bonferroni method, however, has been shown to be unnecessarily 
stringent for many practical situations; therefore the WWC has adopted a more recently 
developed method to correct for multiple comparisons—the Benjamini-Hochberg (BH) method, 
which is less conservative than the Bonferroni method, yet still provides adequate protection 
against Type I error in a wide range of applications (Benjamini & Hochberg, 1995).   
 

As is the case with clustering correction, the WWC only applies the BH correction to 
statistically significant findings, because non-significant findings will remain non-significant 
after correction. For findings based on analyses where the unit of analysis was properly aligned 
with the unit of assignment, we use the p-values reported in the study for the BH correction. If 
the exact p-values were not available, but the ES’s could be computed, we will convert the ES’s 
to t-statistics (see Equation (4)), and then obtain the corresponding p-values.6 For findings based 
on mismatched analyses, we first correct the author-reported p-values for clustering, and then use 
the clustering-corrected p-values for the BH correction.  
 
 Although the BH correction procedure described above was originally developed under 
the assumption of independent test statistics (Benjamini & Hochberg, 1995), Benjamini and 
Yekutieli (2001) point out that it also applies to situations where the test statistics have positive 
dependency, and that the condition for positive dependency is general enough to cover many 
problems of practical interest. For other forms of dependency, a modification of the original BH 
procedure could be made, which, however, is “very often not needed, and yields too conservative 
a procedure” (p. 1183).7 Therefore, the WWC has chosen to use the original BH procedure rather 
than its more conservative modified version as the default approach to correcting for multiple 
comparisons. In the remainder of this section, we describe the specific procedures for applying 
the BH correction in three types of situations: studies that tested multiple outcome measures in 
the same outcome domain with a single comparison group, studies that tested a given outcome 
measure with multiple comparison groups, and studies that tested multiple outcome measures in 
the same outcome domain with multiple comparison groups. 
 

                                                 
6 The p-values corresponding to the t-statistics can either be looked up in a t-distribution table, or computed using 
the t-distribution function in Excel: p = TDIST(t, df, 2), where df is the degrees of freedom, or the total sample size 
minus 2 for findings from properly aligned analyses. 
7 The modified version of the BH procedure uses α over the sum of the inverse of the p-value ranks across the m 

comparisons (i.e., ∑ =

m

i i1

1/α ) instead of α in Equation (20).  
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Benjamini-Hochberg Correction of the Statistical Significance of Effects on Multiple 
Outcome Measures within the Same Outcome Domain Tested with a Single Comparison 
Groups 
 
The most straightforward situation that may require the BH correction is when the study authors 
assessed an intervention’s effect on multiple outcome measures within the same outcome domain 
using a single comparison group. For such studies, the review team needs to first check whether 
the study authors’ analyses already took into account multiple comparisons (e.g., through a 
proper multivariate analysis). If so, obviously no further correction is necessary. If the authors 
did not address the multiple comparison problem, then the review team will correct the statistical 
significance of the authors’ findings using the BH method. For studies that examined measures 
in multiple outcome domains, the BH correction will be applied to the set of findings within the 
same domain rather than across different domains.  Assuming that the BH correction is needed, 
the review team will  apply the BH correction to multiple findings within a given outcome 
domain tested with a single comparison group  as follows:  
 
(1) Rank order statistically significant findings within the domain in ascending order of the p-
values, such that:  p1 ≤ p2 ≤ p3 ≤ … ≤ pm, with m being the number of significant findings within 
the domain.   
 
(2) For each p-value (pi), compute:  

'  = ip ,*
M

i α          (20)

where i is the rank for pi, with i = 1, 2, … m; M is the total number of findings within the domain 
reported by the WWC; and α is the target level of statistical significance. 
 

Note that the M in the denominator of Equation (20) may be less than the number of 
outcomes that the study authors actually examined in their study for two reasons: (1) the authors 
may not have reported findings from the complete set of comparisons that they had made, and 
(2) certain outcomes assessed by the study authors may be deemed irrelevant to the WWC’s 
review. The target level of statistical significance, α, in the numerator of Equation (20) allows us 
to identify findings that are significant at this level after correction for multiple comparisons. The 
WWC’s default value of α is 0.05, although other values of α could also be specified. If, for 
instance, α is set at 0.01 instead of 0.05, then the results of the BH correction would indicate 
which individual findings are statistically significant at the 0.01 level instead of the 0.05 level 
after taking multiple comparisons into account.  
 
(3) Identify the largest i—denoted by k— that satisfies the condition: pi ≤ pi’. This establishes the 
cut-off point, and allows us to conclude that all findings with p-values smaller than or equal to pk 
are statistically significant, and findings with p-values greater than  pk are not significant at the 
pre-specified level of significance (α = 0.05 by default) after correction for multiple comparisons.  
 

One thing to note is that, unlike clustering correction, which produces a new p-value for 
each corrected finding, the BH correction does not generate a new p-value for each finding, but 
rather only indicates whether the finding is significant or not at the pre-specified level of 
statistical significance after the correction. As an illustration, suppose a researcher compared the 
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performance of the intervention group and the comparison group on eight measures in a given 
outcome domain, and reported six statistically significant effects and two non-significant effects 
based on properly aligned analyses. To correct the significance of the findings for multiple 
comparisons, we would first rank-order the p-values of the six author-reported significant 
findings in the first column of Table 1, and list the p-value ranks in the second column. We then 
compute pi’= i* α /M, using Equation (20) with M = 8 and α=0.05, and record the values in the 
third column. Next, we identify k, the largest i, that meets the condition: pi ≤ pi’. In this example, 
k = 4, and pk = 0.014. Thus, we can claim that the four finding associated with a p-value of 0.014 
or smaller are statistically significant at the 0.05 level after correction for multiple comparisons. 
The other two findings, although reported as being statistically significant, are no longer 
significant after the correction.  
 
Table 1.  An Illustration of Applying the Benjamini-Hochberg Correction for Multiple 
Comparisons  
 

Author-reported or 
clustering-

corrected p-value 
(pi) 

P-value 
rank (i) 

8
)05.0(*' ipi =

 pi’= i* 
(0.05)/8 

pi ≤ pi’? 
Statistical significance 

after BH correction  
(α = .05) 

0.002 1 0.006 Yes significant 

0.009 2 0.013 Yes significant 
0.011 3 0.019 Yes significant 
0.014 4 0.025 Yes significant 
0.034 5 0.031 No n.s. 

0.041 6 0.038 No n.s. 
Note. n.s.: not statistically significant. 
 
Benjamini-Hochberg Correction of the Statistical Significance of Effects on a Given 
Outcome Tested with Multiple Comparison Groups 
 
The above discussion pertains to the multiple comparison problem when the study authors tested 
multiple outcomes within the same domain with a single comparison group. Another type of 
multiple comparison problem occurs when the study authors tested an intervention’s effect on a 
given outcome by comparing the intervention group with multiple comparison groups. The 
WWC’s recommendation for handling such studies is as follows:   
 

1. In consultation with the PI and the study authors if needed, the review team selects a 
single comparison group that best represented the “business as usual” condition or 
that is considered most relevant to the WWC’s review. Only findings based on 
comparisons between the intervention group and this particular comparison group 
will be included in the WWC’s review. Findings involving the other comparison 
groups will be ignored, and the dependence due to one intervention group being 
compared with multiple comparison groups could also be ignored. 

 

 14



2. If the PI and the review team believe that it is appropriate to combine the multiple 
comparison groups, and if adequate data are available for deriving the means and 
standard deviations of the combined group, the team may present the findings based 
on comparisons of the intervention group and the combined comparison group instead 
of findings based on comparisons of the intervention group and each individual 
comparison group. The kind of dependence due to one intervention group being 
compared with multiple comparison groups will no longer be an issue in this 
approach.  

 
The PI and the review team may judge the appropriateness of combining multiple 
comparison groups by considering whether there was enough common ground among 
the different comparison groups that warrant such a combination; and particularly, 
whether the study authors themselves conducted combined analyses or indicated the 
appropriateness, or the lack thereof, of combined analyses. In cases where the study 
authors did not conduct or suggest combined analyses, it is advisable for the review 
team to check with the study authors before combining the data from different 
comparison groups.  

 
3. If the PI and the review team believe that neither of the above two options is 

appropriate for a particular study, and that findings from comparisons of the 
intervention group and each individual comparison group should be presented, they 
need to make sure that the findings presented in the WWC’s intervention report are 
corrected for the dependence due to multiple comparison groups if necessary. The 
review team needs to first check the study report or check with the study authors 
whether the comparisons of the multiple groups were based on a proper statistical test 
that already took such dependence into account (e.g., Dunnett’s test (Dunnet, 1955), 
the Bonferroni method (Bonferroni, 1935), Scheffe’s test (1953), and Tukey’s HSD 
test (1949)). If so, then there would be no need for the team to make further 
corrections for such dependence.  

 
It is also advisable for the team to check with the study authors regarding the 
appropriateness of correcting their findings for the dependence due to multiple 
comparison groups, as the authors might have theoretical or empirical reasons for 
considering the findings from comparisons of the intervention group and a given 
comparison group without consideration of other comparisons made within the same 
study. If the team decides that correction for the dependence due to multiple 
comparison groups is necessary, they will apply such correction using the BH method 
in the same way as they would apply it to findings on multiple outcomes within the 
same domain tested with a single comparison group as described in the previous 
section.  

 
Benjamini-Hochberg Correction of the Statistical Significance of Effects on Multiple 
Outcome Measures in the Same Outcome Domain Tested with Multiple Comparison 
Groups 
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A more complicated multiple comparison problem arises when a study tested an intervention’s 
effect on multiple outcome measures in a given domain with multiple comparison groups. The 
dependence of findings thus may originate from two sources. Assuming that both types of 
dependence need to be corrected, the review team will apply the BH correction in accordance 
with the following three scenarios.  
 
Scenario 1: The study authors’s findings did not take into account either type of dependence.  
 
In this case, the BH correction will be based on the total number of comparisons made. For 
example, if a study compared one intervention group with two comparison groups on five 
outcomes in the same domain without taking into account the dependency of the findings, then 
the BH correction will be applied to the 10 individual findings based on a total of 10 
comparisons.  
 
Scenario 2: The study authors’s findings took into account the dependence due to multiple 
comparisons, but not the dependence due to multiple outcomes.  
 
In some studies, the authors may have performed a proper multiple comparison test (e.g., 
Dunnett’s test) on each individual outcome that took into account the dependence due to multiple 
comparison groups. For such studies, the WWC will only need to correct the findings for the 
dependence due to multiple outcomes. Specifically, separate BH corrections will be made to the 
findings based on comparisons involving different comparison groups. With two comparison 
groups, for instance, the review team will apply the BH correction to the two sets of findings 
separately—one set of findings (one finding for each outcome) for each comparison group.  
Scenario3: The study authors’s findings took into account the dependence due to multiple 
outcomes, but not the dependence due to multiple comparison groups.  
 
Although this scenario may be rare, it is possible that the study authors performed a proper 
multivariate test (e.g., MANOVA or MANCOVA) to compare the intervention group with a 
given comparison group that took into account the dependence due to multiple outcomes, and 
separate multivariate tests were performed for different comparison groups. For such studies, the 
review team will only need to correct the findings for the dependence due to multiple 
comparison groups. Specifically, separate BH corrections will be made to the findings on 
different outcomes. With five outcomes and two comparison groups, for instance, the review 
team will apply the BH correction to the five sets of findings separately—one set of findings 
(one finding for each comparison group) for each outcome measure.  
 
The decision rules described above for the three scenarios are summarized in the table below.  
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Table 2. Decision Rules for Correcting the Significance Levels of Findings from Studies 
That Tested Multiple Outcomes in a Given Domain with Multiple Comparison Groups, by 
Scenario 
 

Authors’ Analyses Benjamini-Hochberg Correction 
1. Did not correct for 

dependence 
• BH correction to all 10 individual findings  

2. Corrected for dependence 
due to multiple comparison 
groups only 

• BH correction to the 5 findings based on T vs. C1 comparisons  
• BH correction to the 5 findings based on T vs. C2 comparisons  

3. Corrected for dependence 
due to multiple outcomes only 

• BH correction to the 2 findings based on T vs. C1 and T vs. C2 
comparisons on O1 

• BH correction to the 2 findings based on T vs. C1 and T vs. C2 
comparisons on O2 

• BH correction to the 2 findings based on T vs. C1 and T vs. C2 
comparisons on O3 

• BH correction to the 2 findings based on T vs. C1 and T vs. C2 
comparisons on O4 

• BH correction to the 2 findings based on T vs. C1 and T vs. C2 
comparisons on O5 

Note. T: treatment (intervention) group;  
         C1 and C2: comparison groups 1 and 2;  
         O1, O2, O3, O4, and O5: five outcome measures within a given outcome domain.  
 
On a final note, although the BH corrections are applied in different ways to the individual study 
findings in different scenarios, such differences do not affect the way in which the intervention 
rating is determined. In all three scenarios of the above example, the 10 findings will be 
presented in a single outcome domain, and the characterization of the intervention’s effects for 
this domain in this study will be based on the corrected statistical significance of each individual 
finding as well as the magnitude and statistical significance of the average effect size across of 
the 10 individual findings within the domain.  
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